5th World Congress of the International Microsimulation Association

2-4 September 2015 Malson du Savoir, Campus Belval, Esch-sur-Alzette, Luxembourg

MicroReg:

a traditional static microsimulation model extended to indirect taxes and in-kind transfers

Maria Luisa Maitino, Letizia Ravagli, Nicola Sciclone Luxembourg, 4 September 2015

Model's structure

Database choice

 \succ EUSILC vs SHIW \rightarrow EUSILC for the sample size

Missing data estimation

- \succ Gross income \rightarrow with an iterative algorithm
- \succ Cadatastral value of buildings \rightarrow with external data on municipal balance sheets

• Sample weights calibration

- To make estimates of gross income more similar to Minister of Finance -> tax gap
- Validation
- New modules
 - Indirect taxes
 - In-kind transfers

Model's structure

Database choice

 \succ EUSILC vs SHIW \rightarrow EUSILC for the sample size

Missing data estimation

- \succ Gross income \rightarrow with an iterative algorithm
- \succ Cadatastral value of buildings \rightarrow with external data on municipal balance sheets

• Sample weights calibration

To make estimates of gross income more similar to Minister of Finance -> tax gap

• Validation

- New modules
 - Indirect taxes
 - In-kind transfers

Indirect Taxes

Objectives and problems

- We need an integrated database on household consumption and income
- EUSILC does not collect consumption → more in general it does not exist a unique survey which collects both income and consumption with a minimum level of accuracy and details

Italian surveys

SHIW (Survey of Households Income and Wealth) - Bank of Italy

• Details and accurate information on income and wealth with only aggregate information on consumption

EUSILC (European Union Survey on Income and Living Conditions) - Eurostat

Details and accurate information on income and wealth, with no information on consumption

HBS (Italian Household Budget Survey) - ISTAT

• Details and accurate information on expenditures

Objectives and problems

- We need an integrated database on household consumption and income
- EUSILC does not collect consumption → more in general it does not exist a unique survey which collects both income and consumption with a minimum level of accuracy and details
- Given Y, X and Z it is necessary to integrate Y and Z by assuming that X is sufficient to jointly determine Y and Z

Our strategy

- Our objective is to link to each household in EUSILC an household in HBS, conditioning on a common set of variables through a statistical matching
- Two important conditions
 - > The two samples extracted randomly from the same population
 - It must exist a set of common variables to the two surveys on which conditioning the matching

Choice of variables on which conditioning

Variable	Parameter estimate	Standard Error	T statistic	Pr > t
Intercept	9.08	0.02	483.94	<.0001
number of rooms	0.04	0	10.78	<.0001
In property	-0.26	0.01	-22.41	<.0001
Vhs	0.08	0.01	9.54	<.0001
Loan	0.11	0.01	8.43	<.0001
Box	0.13	0.01	14.37	<.0001
Pc	0.14	0.02	8.9	<.0001
Car	0.27	0.01	23.11	<.0001
Internet	0.09	0.02	5.7	<.0001
Dishwasher	0.18	0.01	19.54	<.0001
Number of members <5 years old	0.03	0.01	2.49	0.013
Number of members 6-17 years old	0.03	0.01	4.26	<.0001
Number of members 18-24 years old	0.05	0.01	3.93	<.0001
Number of members 25-34 years old	-0.01	0.01	-0.74	0.461
Number of members 34-69 years old	0.03	0.01	3.93	<.0001
Householder with low education	-0.08	0.01	-5.66	<.0001
Number of males	0.02	0.01	2.91	0.004
Number of job seeckers	-0.07	0.01	-5.71	<.0001
Number of retired	0.04	0.01	4.52	<.0001
Number of not employed	0	0.01	0.23	0.82
Number of managers	0.12	0.02	5.4	<.0001
Number of self-employed	0.08	0.01	5.22	<.0001
Number of members with high education	0.11	0.01	10.78	<.0001
Number of members with medium education	0.04	0.01	4.82	<.0001
Number of earners	0.08	0.01	7.45	<.0001

A regression to improve the matching

• We use SHIW which collects both income and consumption, even if aggregated, to estimate a regression of total consumption on disposable income, separately for each income quintile

$$\log(c) = \beta_{o} + \beta_{1}\log(y) + \varepsilon$$

- Coefficients are then applied to **EUSILC** households
- We obtain an estimate of total consumption to add to variables common to HBS on which conditioning the matching

Distance function and matching criteria

- Exact matching for geographical area and number of components
- For the other variables we use this proximity function:

$$s(x, y) = \max \sum_{j=1}^{N} \sum_{i=1}^{P} s_i(x_{ij}, y_{ij}) \quad \forall j \in N$$
$$s_i(x_{ij}, y_{ij}) = \begin{cases} 1 \text{ if } x_{ij} = y_{ij} \\ 0 \text{ otherwise} \end{cases}$$

- Total consumption is considered equal if difference < 1.000€
- When 2 HBS households have the same distance, the one with the lower difference in total consumption is used

In-Kind Transfers

Aims and objectives

To estimate **secondary income distribution** taking into account also **in-kind transfers** in **education and health** in order to:

- analyse the distributive impact of in-kind transfers, also with respect to in-cash transfers
- study the impact of spending review → public spending cuts

Give a monetary value to <u>benefits</u>
Impute <u>consumption</u> to individuals and households

Our strategy

- The monetary value of in-kind transfers is computed with the **public cost of production**
 - Implicit assumptions: no inefficiency, no differences in quality, no differences in individuals preferences

• The imputation of consumption is done through the actual consumption approach

School and higher education

Benefits

- The monetary value is estimated with data from government/universities balance sheets
- A per student cost is obtained with the ratio with respect to the number of students
- For university a net of fees value is obtained after having estimated ISEEU (Italian means test for tuition fees)

Consumption

- By age until middle school
- By the indication to be registered until university

Health

Benefits

- We used administrative regional data to estimate a cost for type of service
 - SDO (from cards hospital discharges): hospital services
 - SPA: outpatient services
 - Pharmaceutical services and rehabilitation services
- Consumption
 - Monte Carlo method to assign consumption of services
 - On regional administrative data estimation of the probability to use each service by socio-demographic characteristics
 - A random number is extract from a uniform distribution
 - The consumption is assigned when the number is lower than the probability

An application

Simulated policies

- Fiscal bonus (low 190/2014 so called Stability Low for 2015) → so called 80 euro bonus for employees
 - Fixed amount of 960 euro for employees with gross income under 24.000 euro
 - decreasing amount for employees with gross income between 24.000 and 26.000 euro
- Increase of VAT (safeguard clause) (low 190/2014 so called Stability Low for 2015)
 - ➢ from 10% to 12% in 2016
 - from 22% to 24% in 2016
- Forecast change of public expenditure in education and health
 - decrease in education
 - ➢ increase in health

Distributive effects

% variation in disposable income

5th World Congress of the International Microsimulation Association

2-4 September 2015 Maison du Savoir, Campus Belval, Esch-sur-Alzette, Luxembourg

Thanks for your attention

