5th World Congress of the International Microsimulation Association

2-4 September 2015

Malson du Savoir, Campus Belval, Esch-sur-Alzette, Luxembourg

A dynamic microsimulation model to predict labour market indicators in Tuscany

Maria Luisa Maitino, Letizia Ravagli, Nicola Sciclone Luxembourg, 4 September 2015

Aim

- Overview: Italy is experiencing a strong worsening on employment conditions, especially for young → labour has become an important issue for the regional policy maker
- Aim: to predict labour market indicators in the short medium run
- Objective: to set a dynamic microsimulation model for a representative sample of the tuscan population

Model's general features

- Population based: ageing and adjustment of a cross sectional sample of the entire population
- Database: Italian Labour Force Survey for Tuscany
- Closed model: except newly born children and migrants, the model only uses a fixed set of individuals
- Dynamic ageing: produces a longitudinal database of histories of each individual in each period of the simulation
- Probabilistic: transitions among states through probabilistic methodologies → Monte Carlo technique
- Discrete time: transition and updating for each year
- Simulation period: short medium run → 2013-2018

The modules structure

Initial sample at time t

Demography

Ageing, mortality, fertility, migration flows

Education

School choice, drop out, tertiary education

Entry the labour force, employment status

Labour market

Labour Supply

Labour Demand

Matching between Supply and Demand

Labour supply

$$O_t = (O_{t-1,t} - P_t - M_t) + \varphi_t$$
$$\varphi_t = \varphi_{t-1} + f_t$$

 $O_t = \sup ply \ time \ t$ $O_{t-1,t} = employed \ time \ t-1$ $P_t = retired$ $M_t = died$ $\varphi_t = unemployed \ time \ t$ $\varphi_{t-1} = unemployed \ time \ t-1$ $f_t = new \ unemployed$

- For t = 2013,...,2018
- For each sector of activity s=1,..,10
- For each level of education \rightarrow **g**=tertiary education, **b**=secondary education, **c**=primary education

Labour supply: activation procedure

Estimated participation rates by gender, education, age class

Source: elaborations on IFL 2011, 2012, 2013 (Tuscany)

- Estimation in three phases and for each sector of activity
 - From IRPET macro model (DANTE) → estimation of Standard Labour Units (SLU) for each simulation year

- Estimation in three phases and for each sector of activity
 - From IRPET macro model (DANTE) → estimation of Standard Labour Units (SLU) for each simulation year
 - 2. From INPS \rightarrow employed in redundancy funds (CIG) \rightarrow scenarios about its evolution in the future \rightarrow CIG's employed are translated in SLU

- Estimation in three phases and for each sector of activity
 - From IRPET macro model (DANTE) → estimation of Standard Labour Units (SLU) for each simulation year
 - 2. From INPS \rightarrow employed in redundancy funds (CIG) \rightarrow scenarios about its evolution in the future \rightarrow CIG's employed are translated in SLU

- Estimation in three phases and for each sector of activity
 - From IRPET macro model (DANTE) → estimation of Standard Labour Units (SLU) for each simulation year
 - 2. From INPS \rightarrow employed in redundancy funds (CIG) \rightarrow scenarios about its evolution in the future \rightarrow CIG's employed are translated in SLU
 - 3. Estimation of the coefficient Coef_slu_on_employed = SLU/employed → scenarios about its evolution in the future → (SLU+CIG's SLU) / Coef_slu_on_employed = Labour demand

Labour demand for education level

	low	medium	high
	education	education	education
Agriculture	76%	21%	3%
Manufacturing	36%	51%	13%
Construction	54%	45%	1%
Trade	40%	56%	4%
Hotels and restaurants	33%	66%	1%
Transport, storage, communication, real estate, renting			
and others	38%	47%	15%
Financial intermediation	0%	41%	59%
Public administration and defence	5%	67%	28%
Education, health and social services	5%	67%	28%
Other service activities	16%	76%	7%

The resulting labour demand $L_{g,s}$, $L_{b,s}$, $L_{c,s}$ is then **EXOGENOUSLY** introduced in our model

Matching between demand and supply

 $O_{t-1,t,s}$ = stock of employed at time t-1 still present at time t

$$\begin{array}{c|c} \textit{If } L_{t,s} \geq O_{t-1,t,s} & \longrightarrow & \text{Over-demand} \\ \\ else \, L_{t,s} < O_{t-1,t,s} & \longrightarrow & \text{Under-demand} \end{array}$$

Matching between demand and supply over-demand

$$O_{t-1,t,s} = O_{t-1,s}$$
 $l *_{t} = L_{t,s} - O_{t-1,t,s}$

$$if \ l *_{g} \ge \phi_{g} \Rightarrow \pi_{g} = 1$$

$$else \ \pi_{g} = \pi_{b} = \frac{l *_{b}}{\phi_{b} + (\phi_{g} - l *_{g})}$$

if
$$l *_b \ge \phi_b + (\phi_g - l *_g) \Rightarrow \pi_g = \pi_b = 1$$

else
$$\pi_g = \pi_b = \pi_c = \frac{l_c^*}{\phi_c + (\phi_g + \phi_b - l_b^* - l_g^*)}$$

$$O_{t-1,t,s} = employed time t-1 ext{ and t}$$
 $O_{t-1,t} = employed time t-1$
 $L_{t,s} = labour demand at time t$
 $l_t^* = excess labour demand time t$

For each time t For each sector s

$$l^* = excess\ labour\ demand$$
 $\varphi = unemployed$
 $\pi = probability\ to\ find\ job$

Matching between demand and supply under-demand

- If $L_{t,s} < O_{t-1,t,s} \Rightarrow O_{t-1,t,s} = O_{t-1,s} P_{t,s} U_{t,s}$
- Probability to be fired is estimated by type of contract and education level

Source: elaborations on IFL (Tuscany)

Validation: labour market indicators

Labour market indicators 2014 Simulated VS Real

	Model	IFL
Active (thousand)	1,707	1,708
Employed (thousand)	1,536	1,535
Unemployed (thousand)	172	173
Participation rate (15-64)	70.9%	71.2%
Employment rate (15+)	47.7%	47.2%
Unemployment rate (15+)	10.1%	10.1%

Main results: the basic scenario parameters

Exogenous variables	Parameters
	Non public sector: -0.0828 (2015), 0.3269 (2016), 0.3197 (2017), 0.1334 (2018)
Standard Labour Units growth rates	Public sector: -0.1 (2015), 0 (2016-2018)
Coef_slu_on_employed growth rates	-0.415 for each year (2015-2018)
CIG (redundancy fund) growth rates	CIG of each year 89% of CIG of the year before (2015-2018)

Basic scenario: mismatch

	2014	2015	2016	2017	2018
Labour demand	1536	1538	1545	1547	1547
Labour supply	1707	1721	1734	1745	1752
Unemployed	172	183	189	199	205
Employment rate	47.7%	47.7%	47.9%	48.0%	48.0%
Unemployment rate	10.1%	10.7%	10.9%	11.4%	11.7%

Basic scenario: unemployment by age classes

Exogenous variables	Parameters
Standard Labour Units growth rates	Non public sector: -0.0828 (2015), 0.3269 (2016), 0.3197 (2017), 0.1334 (2018) Public sector: -0.1 (2015), 0 (2016-2018)
Coef_slu_on_employed growth rates	-0.415 for each year (2015-2018)
CIG (redundancy fund) growth rates	CIG of each year 89% of CIG of the year before (2015-2018)

Exogenous variables	Parameters
Standard Labour Units growth rates	Non public sector: -0.0828 (2015), 0.6538 (2016), 0.6934 (2017), 0.2668 (2018) Public sector: -0.1 (2015), 0 (2016-2018)
Coef_slu_on_employed growth rates	-0.415 for each year (2015-2018)
CIG (redundancy fund) growth rates	CIG of each year 89% of CIG of the year before (2015-2018)

Exogeneous variabes	Parameters
Standard Labour Units growth rates	Non public sector: -0.0828 (2015), 0.3269 (2016), 0.3197 (2017), 0.1334 (2018) Public sector: -0.1 (2015), 0 (2016-2018)
Coef_slu_on_employed growth rates	-0.415 for each year (2015-2018)
CIG (redundancy fund) growth rates	CIG of each year 89% of CIG of the year before (2015-2018)

Exogenous variables	Parameters
Standard Labour Units	Non public sector: -0.0828 (2015), 0.3269 (2016), 0.3197 (2017), 0.1334 (2018) Public sector:
growth rates	-0.1 (2015), 0 (2016-2018)
Coef_slu_on_employed growth rates	-0.83 for each year (2015-2018)
CIG (redundancy fund) growth rates	CIG of each year 89% of CIG of the year before (2015-2018)

Exogenous variables	Parameters
	Non public sector: -0.0828 (2015), 0.3269 (2016), 0.3197 (2017), 0.1334 (2018)
Standard Labour Units growth rates	Public sector: -0.1 (2015), 0 (2016-2018)
Coef_slu_on_employed growth rates	-0.415 for each year (2015-2018)
CIG (redundancy fund) growth rates	CIG of each year 89% of CIG of the year before (2015-2018)

Exogenous variables	Parameters
	Non public sector:
	- 0.0828 (2015), 0.3269 (2016), 0.3197 (2017), 0.1334 (2018)
Standard Labour Units	Public sector:
growth rates	-0.1 (2015), 0 (2016-2018)
Coef_slu_on_employed	
growth rates	-0.415 for each year (2015-2018)
CIG (redundancy fund)	
	CIC of each year 200/ of CIC of the year before (2015, 2010)
growth rates	CIG of each year 20% of CIG of the year before (2015-2018)

Unemployment rates under alternatives scenarios

5th World Congress of the International Microsimulation Association

2-4 September 2015

Malson du Savoir, Campus Belval, Esch-sur-Alzette, Luxembourg

Thanks for your attention

